
Eurographics Symposium on Rendering - Experimental Ideas & Implementations (2017)
P. Sander and M. Zwicker (Editors)

VAO++: Practical Volumetric Ambient Occlusion for Games

J. Bokšanský1, A. Pospíšil1 and J. Bittner2

1Project Wilberforce, Czech Republic
2Czech Technical University in Prague, Czech Republic

Figure 1: Snapshot of the test scenes rendered in Unity game engine with VAO++ applied (top row) and VAO++ component only (bottom
row). The rightmost scene shows VAO++ with color bleeding enabled.

Abstract
Ambient occlusion is one of the commonly used methods to increase visual fidelity in real-time rendering applications. We
propose several extensions of the recently introduced volumetric ambient occlusion method. These extensions improve the
properties of the methods with a particular focus on the quality vs performance tradeoff and wide applicability in contemporary
games. We describe the implementation of the proposed algorithm and its extensions. We implemented the method as a camera
effect within the Unity game engine. The results show that our implementation compares favorably with the standard ambient
occlusion in Unity both in terms of quality and speed.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

The contemporary graphics hardware is powerful enough to render
complex dynamic scenes with detailed geometry, realistic materi-
als, and various illumination effects in real-time. However, phys-
ically based simulation of light transport is still far too complex
for real-time applications such as games. To counteract this issue
numerous techniques approximating different illumination effects
have been designed, such as shadow mapping to handle shadows,
reflection maps to handle specular reflections, or light maps for pre-
computing global illumination. One of the popular techniques is
ambient occlusion [ZIK98,IKSZ03,Lan02] that aims to capture the

occlusion due to nearby geometry and thus to compute its influence
of ambient lighting. In many scenes, ambient lighting is an impor-
tant illumination component, and consequently ambient occlusion
greatly contributes to the perception of realism of the rendered im-
ages.

The first ambient occlusion methods worked in object space and
evaluated the ambient occlusion in a preprocess [ZIK98, Lan02].
With the introduction of screen space ambient occlusion [Mit07,
SA07] it was possible to approximate ambient occlusion in real-
time using just the information stored in the depth buffer. Several
powerful screen space ambient occlusion methods have been pro-

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Bokšanský, Pospíšil, Bittner / VAO++: Practical Volumetric Ambient Occlusion for Games

posed using a different interpretation of the depth-buffer informa-
tion and the associated ambient occlusion evaluation. One of the
more recent techniques is the volumetric ambient occlusion (VAO)
proposed by Szirmay-Kalos et al. [SKUT∗10]. This method formu-
lates the problem as a volumetric integral providing robust results
even with a relatively low number of samples.

We propose the VAO++ method that consists of several prac-
tical extensions of VAO that aim to maximize the performance
for real-time applications such as games. In particular, we pro-
pose adaptive sampling and culling pre-pass that speed up the al-
gorithm with minimal influence on the quality of the output. Our
solution achieves up to 2.4x speedup with respect to the original
VAO method and 1.3x speedup with respect to the built-in Unity
SSAO implementation. We also describe several other practical de-
tails that increase the perceived quality of the results such as lumi-
nance sensitivity, depth range check, and efficient interleaved sam-
pling with a compact sample set.

We describe the implementation of VAO++ in the Unity game
engine. The results indicate that the method competes favorably
with the standard ambient occlusion implemented in Unity both
concerning speed and perceived quality.

2. Related work

One of the first attempts to handle ambient lighting is the ambient
term in the classical Phong illumination model [Pho75]. This term
accounts for global ambient illumination, but it does not handle oc-
clusion due to nearby geometry. Zhukov et al. [ZIK98] and Iones
et al. [IKSZ03] were the first to observe that the modulation of in-
coming light could be precomputed by evaluating the accessibility
of the points on the surfaces with respect to incoming ambient light.
They used a continuous function of distance to modulate the contri-
bution of nearby geometry to the obscurance or ambient occlusion
of a point. The ambient occlusion has been quickly adopted by the
industry [Lan02]. In many cases a simplified version of ambient oc-
clusion has been used which did not take the distance into account
and evaluated the unoccluded fraction of the hemisphere within a
given distance threshold.

To support dynamic scenes Kontkanen et al. [KL05] proposed
ambient occlusion fields and later extended to method to animated
characters [KA06]. Bunnnell [BE05] proposed a method for han-
dling scenes with deforming surfaces. Mendez et al. [MSC03] pro-
posed to account for color bleeding effects. Further extensions of
these methods have been proposed by Hoberock and Jia [HJ08] and
Christensen [Chr08].

The previously mentioned methods rely on ray tracing or vari-
ous surface discretizations. A new path towards handling complex
fully dynamic scene at interactive rates appeared with the intro-
duction of screen space ambient occlusion methods [HJ08, Mit07,
SA07, Ngu07, CAM08]. These methods evaluate the ambient oc-
clusion in real-time based on the content of the depth buffer. The
screen space methods were extended to also handle directional
occlusion [RGS09] for more accurate environmental lighting and
color bleeding. Sainz et al. [Sai08] proposed the horizon based am-
bient occlusion which evaluates the ambient occlusion by recon-
structing the horizon as seen from the shaded point. Szirmay et

al. [SKUT∗10] proposed a volumetric ambient occlusion that uses
a clever reformulation of the screen space AO evaluation to volu-
metric integration. We use this method as a basis for our optimiza-
tions and discuss some practical issues of integrating the method
into a contemporary game engine.

The paper is organized as follows: In Section 3 we outline the
VAO algorithm. Section 4 presents the extensions of the VAO++
algorithm. Section 5 describes implementation in Unity. Section 6
presents the results and finally Section 7 concludes the paper.

3. VAO Algorithm Outline

In this section we provide a brief outline of the VAO algo-
rithm [SKUT∗10]. Much like other screen-space solutions VAO
approximates occlusion by considering local occluders only. Most
screen space ambient occlusion method analyze the contents of the
depth buffer lying inside a hemisphere of a given radius (R). The
volume of the hemisphere is sampled and the ambient occlusion
is computed as the fraction of unoccluded samples. Contrary to
this, VAO uses a clever transformation of the sampling domain to a
smaller tangent sphere of radius R/2 moved along the surface nor-
mal (Figure 2). The ambient occlusion is computed as a fraction of
unoccluded volume of the tangent sphere.

Figure 2: The comparison of searched volumes of conventional
AO (hemisphere) and VAO (tangent sphere).

Such transformation creates a tighter local neighbourhood (the
tangent sphere has fourth of the volume of the usually used hemi-
sphere) leading to a more efficiently sampled volume. It also sim-
plifies implementation: there is no need to calculate cosines and
the generated samples all lie within the disk of radius R/2 located
in the center of tangent sphere perpendicular to Z-Axis (in camera
space).

Each sample represents a volume (pipe) intersecting the tangent
sphere that corresponds to a ray from the camera to the given sam-
ple. For each sample an unoccluded part of the corresponding pipe
is calculated (the total length of unoccluded pipe can be precalcu-
lated for each sample as an optimization). Then for each sample
one of the following three cases occurs (Figure 3):

• Case A: Occlusion happens inside the tangent sphere
• Case B: Either no occlusion or occlusion happens deeper in the

scene
• Case C: Occlusion occured before reaching the tangent sphere.

The volumes of the unoccluded pipe segments are summed and
represent an open, unoccluded volume which is divided by the to-
tal volume of the tangent sphere. The volumetric ambient occlusion

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Bokšanský, Pospíšil, Bittner / VAO++: Practical Volumetric Ambient Occlusion for Games

Figure 3: Three possible cases for line samples. Case A: the pipe
is partially occluded, Case B: the pipe is completely unoccluded
and Case C: the pipe is completely occluded.

V (~x) of point x is computed by uniformly sampling the disc span-
ning the tanget sphere as:

V (~x) =

∫
S
I(~p)d p

| S | ≈ 3
2Rn

n

∑
i=1

∆zi =
1
F

n

∑
i=1

∆zi, (1)

where n is the number of samples, ∆zi is the length of the pipe
corresponding to i− th sample, R is the width of the AO kernel,
and F is the volume of the tangent sphere | S |= 4(R/2)3

π/3 di-
vided by R2

π/(4n). Analytical computation of F is possible but we
use a numerical approximation as it produces better results due to
correlated error of the estimators [SKUT∗10]:

F ≈ R
n

∑
i=1

√
1− x2

i − y2
i (2)

The VAO algorithm runs in three passes: (1) calculate occlusion
into a texture, (2) apply low pass filter removing high frequency
noise, (3) perform shading, i.e. apply the occlusion to the color
buffer.

4. The VAO++ Algorithm

We extend original VAO algorithm to improve its performance and
to make it more efficient in common application use cases. The
extensions and other important parts of the proposed VAO++ algo-
rithm are described in this section.

Our extensions work effectively for wide range of scenes. The
heuristics they depend on are focused on gaining performance in
areas where the difference is less noticeable – distant geometry in
case of adaptive sampling and open surfaces for culling pre-pass.
These methods are not general but work well especially in games
where such cases commonly appear.

4.1. Adaptive Sampling

The existing AO methods usually use a globally specified quality
setting including the number of samples to use. The idea of adap-
tive sampling extension is to use fewer samples further from camera
where the sampling radius is smaller (due to perspective projec-
tion) and therefore lower number of samples should be sufficient to

achieve the same level of quality. In other words we try to maintain
the same sampling density in post-perspective image space.

In VAO the sampling kernel always displays as a disc on the
screen (not a hemisphere as in other algorithms) and thus it is easy
to select the appropriate number of samples based on the surface
area of the disc after perspective projection.

We let the user set the diameter of the disc in relative screen
space units for which the lowest number of samples should be used.
Because of this the method works the same way across different
resolutions and it also enables us to give user multiple pre-defined
quality options. The number of samples used on this pre-defined
distance is set to the minimum (i.e. two samples) and we double
the number of samples every time surface area of the sampling disc
doubles until the maximum number of samples is reached.

The implementation selects from the precomputed sample sets
with 2, 4, 8, 16 or 32 samples. We send all these samples to the
GPU shader as a single array uniform of size 62. Such sample set
fits the practical limit of the array size sent to GPU (100 items) and
thus supports as many target platforms as possible.

Figure 4: Visualization of the levels of adaptive sampling – back
to front: 4, 8, 16, 32 samples.

4.2. Culling Pre-pass

In most scenes, the ambient occlusion appears only in some areas
of the image (corners, cracks etc.). In other areas, the calculation is
unnecessary and could be omitted. The culling pre-pass is a tech-
nique designed to speed-up AO calculation by omitting it in areas
that are likely to have no occlusion. We first calculate AO in a lower
resolution texture (we use 1/8 resolution of the final image) to esti-
mate areas where AO occurs. We also always use 8 samples for this
pass. Calculating AO in this low resolution texture is theoretically
64-times faster and therefore very cheap. In the second pass we
only calculate AO for areas which were occluded in the low resolu-
tion texture. For higher resolutions and sampling kernel sizes, this
step significantly improves the performance with minimal quality
loss. It was designed with ’single pass stereo rendering’ technique
for virtual reality in mind, where the effect is applied to a relatively
large texture.

Checking for estimated occlusion in the second pass is done via
four texel fetches from downsized AO texture in given pixel cor-
ners. Texture interpolation mode is set to linear so we get an inter-
polated result from eight surrounding pixels covering 24×24 area.
When at least one of these pixels exhibits occlusion, we calculate
full AO – otherwise the pixel is a candidate for culling (Figures 5
and 6).

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Bokšanský, Pospíšil, Bittner / VAO++: Practical Volumetric Ambient Occlusion for Games

Figure 5: Illustration of culling pre-pass. Areas where no occlu-
sion is estimated are culled (shown in white). Areas that will be
calculated in full detail are shown in black.

Figure 6: Resulting scene with culling pre-pass enabled.

For handling the culling candidate pixels we settled with two
variants of this technique. First we call ’greedy’ and it completely
omits the calculation where no AO is estimated. This can possibly
lead to flickering white lines or squares of size 8× 8 when esti-
mation fails to detect small details. When using large AO radius,
greedy variant can produce little to no artifacts and can be used for
higher performance boost. This is obviously scene dependent and
should it become an issue, we fall back on to a second ’careful’
variant of the method. This technique calculates occlusion with 4
samples in areas where no AO is estimated regardless of selected
quality. Four samples are enough to provide adequate quality, be-
cause these areas only contain small details (less than 8× 8 pixels
in size at most).

The quality loss of careful culling pre-pass is almost impercep-
tible and is turned on as a default setting in our implementation
(Figure 7).

Figure 7: (left) VAO with ’greedy’ culling pre-pass. Notice white
square artifact. (center) ’Careful’ pre-pass significantly improves
result. (right) Reference with no culling pre-pass. Images have been
gamma corrected to exaggerate the artifact.

4.3. Luminance Sensitivity

One of the common problems with SSAO methods is that they only
consider geometrical scene information. As such they usually draw
occlusion over surfaces where no ambient shadows should appear
– such as light sources and emmisive or highly specular materi-
als. To counteract these defects we propose a luminance sensitivity
extension. The luminance sensitivity suppresses ambient occlusion
based on the brightness (luminance) of the evaluated surface (Fig-
ure 8).

The method uses a user-specified brightness threshold above
which the AO component is going to be reduced. For given point x
the luminance corrected ambient occlusion AOL(x) is expressed as:

AOL(x)=AO(x)
(

1− min(1,max(0, lum(x)− threshold +width))
2width

)σ

,

(3)

where AO(x) is the input ambient occlusion, lum(x) expresses
the luminance computed from RGB color of x, threshold is a user
specified threshold, and width and sigma are constants defining the
profile of the correction function. Alternativelly we use the V com-
ponent of the HSV color model instead of luminance, which pro-
vides results less dependent on the hue color component. Examples
of luminance snsitivity curves are shown in Figure 9.

4.4. Depth Range Check

One of the biggest disadvantages of using the depth buffer as an ap-
proximation of the scene geometry lies in loss of information about
the occluded parts of the scene. Without any additional source of
information the VAO algorithm considers all occluders infinitely
thick (see the Case C of the VAO method). Note that this causes
undesired shadow outline in areas where no occlusion should oc-
cur (Figure 10). There had been many proposals on how to coun-
teract this issue to produce realistic results in the past such as
depth peeling [Eve01] or getting the information from other cam-
era views [VPG13]. These solutions however introduce heavy per-
formance overhead. We propose a fast method that produces visu-
ally satisfactory results and requires no additional settings from the
user.

Instead of considering occluders infinitely thick, we assume they
are flat and their thickness gradually decreases. When given sam-
ple is fully inside geometry (VAO Case C), we decrease occlusion
depending on distance from occluder which is expressed by the
falloff function (Equation 4). From numerous tested functions we
have selected one that yielded aesthetically best results. This func-
tion essentially describes the thickness of geometry behind what is
seen by the camera.

s(d) =
u

max(u, d
radius)

(4)

s(d) expresses occlusion contribution of the sample that is in dis-
tance d behind occluder in view-space units taking into account the
kernel radius. The weight of the sample (length of the pipe inter-
secting the tagent sphere) is reduced by multiplying it by s(d) to

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Bokšanský, Pospíšil, Bittner / VAO++: Practical Volumetric Ambient Occlusion for Games

Figure 8: Scene without AO, AO without luminance sensitivity and AO with the luminance sensitivity enabled.

Figure 9: Luminance sensitivity curves for various sigma (linear-
ity) settings. The threshold was set to 0.5 and width to 0.3.

Figure 10: (left) Visible shadow outline in original algorithm.
(right) Corrected result with depth range check.

gradually decrease occlusion with increasing distance. The u pa-
rameter offsets thickness by certain amount to suppress artifacts
(self-occlusions) caused by numerical imprecision of depth buffer
(Figure 11). We use empirically selected value of 0.03 for u in our
implementation which creates smooth transition in areas with depth
discontinuity and suppresses the halo artifact significantly.

Figure 11: Falloff function describing the thickness of geometry
seen by the camera.

4.5. Samples Generation

One of the most significant factors on final visual result is the qual-
ity of sample sets used to estimate the occlusion volumes. The VAO
algorithm uses samples distributed within the disk of tangent sphere
great circle as opposed to more conventional SSAO solutions which
use three-dimensional distributions of samples in the hemisphere.

We employ interleaved sampling by rotating the sample set in
each pixel by uniformly distributed angle to get a different (yet
symmetrical) sample set. We use repeated pattern of rotation an-
gles in 3×3 pixel tiles. Experimentally we have established that the
3× 3 tile size is sufficient to produce results of high visual quality
(the number of samples is virtually increased by factor of 9) and
small enough to be completely removed by fast low-pass filter of
matching size. Therefore we require to generate a sample set that
yields a uniform sample distribution after rotating it nine times.

We use a sample generator based on Poisson disk distribution
that generates a compact sample set that considers the rotations
during generation. The main goal of this method is the reduction
of the banding artifacts caused by uneven distribution of samples
(see Figure 12).

Our Poisson Disk sample generator takes the future rotations of
samples into account (Figure 13). We use nine uniform-step an-
gles for rotations. This creates a minor advantage in that rotations
do not have to be fetched from a custom texture but rather can be
calculated from UV coordinates (this resulted in about 1% perfor-
mance increase). Our generator stores not only newly added points,
but also all of their rotations. When another point is being consid-
ered as a sample candidate, this approach ensures that it will be far
enough from all the other points including their rotations.

After generating the Poisson disk sample distribution, we select
the best permutation of rotated samples so that sum of their dis-
tances from each other is maximal. This further lowers the noise
introduced by rotations. For sample-sets of size 8 and less it is fea-
sible to test all permutations. For larger sets, we incrementally add
groups of 8 samples and look for best permutation of last group
with fixed previous groups (Figure 14).

Finally, samples are sorted according to the z-order, so that sam-
ples spatially close in the scene are also close to each other in mem-
ory. This increases cache coherence while fetching the data from
depth and normal textures.

The sample set generated with the above described algorithm
also improves the visual quality of the transition between the sets
of different sizes in the adaptive sampling step of the method.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Bokšanský, Pospíšil, Bittner / VAO++: Practical Volumetric Ambient Occlusion for Games

Figure 12: Reduction of banding artifacts by taking the sample rotations into account during their generation. (left) Rotation-unaware
Poisson disk distribution. (right) Using the sample set generated by the proposed method.

Figure 13: Comparison between the uniform distribution that is
rotated afterwards and our modified distribution that considers ro-
tations during generation (16 samples multiplied by 9 rotations).

Figure 14: Sampling kernel of size 4 generated by Poisson Disk
generator (left). Best permutation of rotations (middle). All rota-
tions (right).

4.6. Low Pass Filter

When using lower number of samples to calculate AO, more arti-
facts caused by undersampling will occur. This happens for 2 and
4 samples (and depending on the radius sometimes even for 8 sam-
ples). These artifacts display as occlusion with jagged edges as low
number of samples are not enough to sample scene geometry prop-
erly. To remove these artifacts we provide optional gaussian blur of
variable size. The user can set size of convolution kernel and devia-
tion of gaussian bell curve to fine-tune the balance between amount
of artifacts and ’blurriness’.

We use a non-linear cross-bilateral filter: we do not take neigh-
bouring pixels with depth variation over a certain pre-defined
threshold into account. As the threshold we take AO radius in
world/view space units and calculate linear view space depth for
each pixel. Omitting depth-awareness part causes disturbing halo
artifacts on areas with depth discontinuities even for convolution of
this small size.

Because the convolution filters of larger kernel sizes are
performance-intensive, we implement the filter in two passes as if
the filter was separable (though technically it is not). It produces

very good results, even in the worst-case scenario when a depth
discontinuity splits filter on the kernel diagonal.

4.7. Color Bleeding

As with some other SSAO methods we also use a simple simula-
tion of color bleeding using an approximation of one indirect light
bounce. To add this effect, the algorithm samples not only the ge-
ometry (represented by depth and normals), but also the color of
the surface. We calculate the contribution of each sample based on
the configuration of the sample position relative to shaded surface
and it’s normal. In particular we compute the amount of indirect
contribution of sample x to shaded point p as:

c(x) = max(0,
(x− p) ·n
|x− p|)(1− |x− p|

radius
)2 (5)

where n is the surface normal and radius is the radius of the AO
kernel. We use c(x) to linearly interpolate between the white color
and the sampled color.

The problem with reusing the same samples for the secondary
bounce arises from the fact that the sample can spatially lie deep
inside the geometry – but for correct results we would like to sam-
ple the geometry surface. This would require ray marching along
the ray from shaded surface to sample the position until we hit the
surface. Such an operation is performance intensive and impracti-
cal. Another solution is to discard samples that do not lie close to
the surface. However, this discards too many samples to provide
usable results.

In our method, we relax this requirement - we use all samples
regardless of whether they lie on the surface or not. We rely on
the fact that problematic samples will occur when there is some
surface close to ray’s origin – this means that their contribution will
be hidden by a strong ambient occlusion in that area. This yields
good results and performance. To improve the performance further,
we can use either half or quarter of the samples to calculate color
bleeding simply by taking every second or fourth sample. Because
samples are z-ordered, we will still sample the whole circle area
evenly.

5. Unity Implementation

VAO++ can be implemented into rendering solutions that generate
per-pixel normals and provide access to depth buffer (any mod-
ern deferred renderer). Effect is applied to resulting image simply

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Bokšanský, Pospíšil, Bittner / VAO++: Practical Volumetric Ambient Occlusion for Games

by multiplication by occlusion values. This is commonly achieved
as an additional rendering pass taking renderer result as input and
producing new result to screen. We have chosen Unity for its pop-
ularity and ease of use.

Unity was designed to be extendable with custom post-
processing effects. The effects can be implemented either as an im-
age effect that is usually attached to the camera node in the scene
graph, or as a command buffer that is a list of graphics commands
that extend existing rendering pipeline. Our implementation pro-
vides both options for solving compatibility issues on certain de-
ployment platforms.

5.1. Image Effect Implementation

The implementation of VAO++ as an image effect in Unity is very
intuitive as the effect has similar behavior to other Unity compo-
nents. The user has a full control over the order in which the im-
age effects are applied. The implementation consists of a pair of
shader and script files. The script loads and executes the shader
when OnRenderImage event is raised. It also contains GUI controls
and sends the selected settings onto the GPU via shader uniform
variables. The shader file contains the implementation of the image
effect as vertex and fragment shaders organized in passes. One of
the problems arising from the image effect approach is that it is ap-
plied as a post processs after all rendering passes are finished. This
can place ambient occlusion on transparent primitives, over previ-
ous effects, and if HDR rendering is enabled, also on brightly lit
surfaces.

5.2. Command Buffer Implementation

The implementation of VAO++ using a command buffer is more
complicated, but the effect can be inserted into the rendering
pipeline where it is supposed to be, i.e. after all opaque primitives
are rendered and before lighting is calculated. This will however
make harder to control the order in which the image effects are ap-
plied to the given scene. The implementation shares a shader file
with the image effect and when enabled, it bypasses the OnRender-
Image event. Instead, it fills the command buffer in the OnPreRen-
der event and sends it for processing within the rendering pipeline.
The command buffer itself contains commands to create temporary
textures and perform certain shader passes as needed by the algo-
rithm.

5.3. VAO++ Shader

We started with an implementation of prototype in OpenGL/GLSL
to eliminate any platform-specific quirks and fine-tuned the algo-
rithm there. Then we rewrote the shader into Cg/HLSL language
used by Unity.

Unity provides access to G-Buffer via special texture
_CameraDepthNormalsTexture that contains octa-encoded view-
space normals in the first 16 bits and the linear depth packed into
the remaining 16 bits. Decoding compressed and packed depth and
normals is done via built-in macro DecodeDepthNormal. Because
the depth is already linearized and in <0,1> range, there is no need

to recalculate it from reciprocal value as in most other implementa-
tions. Because depth and normals are compressed into 16 bits each,
their precision is lower than precision available on modern GPUs.
Thanks to it’s design, the algorithm is quite resistant to these im-
precisions and it doesn’t require a magic bias variable commonly
found in similar effects.

The view space position of shaded pixel is calculated by repro-
jection. In the vertex shader, the position of each screen corner is
reprojected from screen space into view space using the inverse of
projection matrix (pre-calculated on the CPU). The resulting val-
ues from the vertex shader are interpolated automatically and in the
fragment shader, they represent a directional vector from the cam-
era onto the far plane in given pixel. This vector is normalized and
multiplied by depth value to get the view-space position of given
pixel.

6. Results and Discussion

In this section we present the impact of different VAO++ exten-
sions on the algorithm performance (Table 1). All measurements
were run on the NVIDIA GTX 970 graphics card and measured
with Unity Profiler. Both of our major optimizations are measured
separately to better show the extent of their effect on different im-
age resolutions and sample counts. We also compare our results
with the Unity SSAO contained within the Unity Post-processing
Stack plugin. Finally, we include sample images of different scenes
to show the behavior of the method for different distances and ge-
ometry (Figure 17).

The culling pre-pass gains performance for sample sets of size
8 and higher. This is caused by the fact that occlusion for culling
candidates is always calculated with sample count of 8. The down-
sampling nature of this algorithm also scales the speedup for higher
resolutions – the culling pre-pass achieved 30% speedup in 1080p
and almost 40% in 4k resolution.

The performance boost caused by the adaptive sampling progres-
sively increases with sample set size. Higher numbers of samples
give greater potential for sample count reduction at farther dis-
tances.

Table 2 and Figure 15 contain the comparison between VAO++
and Unity SSAO. Both methods were set in such a way as to make
the AO shadows of approximately the same size. For 16 samples
VAO++ is about 20% faster than Unity SSAO in 1080p and over
30% faster in 4k. It is also worth noting that further doubling the
size of the VAO++ sample set (to 32 samples) is only 15% slower
than Unity SSAO with 16 samples in 1080p and just 3% slower in
4k.

Visual results of VAO++ are close to raytraced AO (Figure 16)
and it preserves shapes of generated shadows also when moving
camera and for dynamic objects. VAO++ does not require large
low pass filter like Unity’s SSAO which results in sharper images
and shadows that match the geometry of the scene better and look
more realistic. We also employ more aggressive range check func-
tion which we believe yields better results and does not over-darken
the scene unnecessarily.

Our extensions aimed at improving performance have very low

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Bokšanský, Pospíšil, Bittner / VAO++: Practical Volumetric Ambient Occlusion for Games

1920×1080 3840×2160
Sample
Count

VAO
Adaptive
Sampling

Culling
Pre-pass

VAO++ VAO
Adaptive
Sampling

Culling
Pre-pass

VAO++

[-] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms]
2 0.65 0.75 (115%) 0.88 (135%) 0.93 (143%) 2.75 3.14 (114%) 3.65 (133%) 3.88 (141%)
4 0.93 0.92 (99%) 1.04 (111%) 1.02 (110%) 4.08 3.91 (96%) 4.31 (106%) 4.26 (104%)
8 1.53 1.27 (83%) 1.37 (89%) 1.2 (78%) 6.87 5.53 (80%) 5.77 (84%) 4.97 (72%)

16 2.67 1.88 (70%) 2.04 (76%) 1.59 (59%) 12.74 8.24 (65%) 8.67 (68%) 6.59 (52%)
32 5.04 3.09 (61%) 3.38 (67%) 2.33 (46%) 23.71 13.76 (58%) 14.47 (61%) 9.77 (41%)

Table 1: Time spent computing the effect with different optimizations. Percentages are the running time ratios with respect to the unacceler-
ated VAO. The fastest setting is shown in bold.

Sample Count 1920×1080 3840×2160
VAO++ SSAO VAO++ SSAO Ratio VAO++ SSAO Ratio

[ms] [ms] [%] [ms] [ms] [%]
2 3 0.65 0.73 89 2.75 3.62 76
4 6 0.92 1.05 88 3.91 5.07 77
8 10 1.2 1.43 84 4.97 6.82 73

16 16 1.59 2.01 79 6.59 9.54 69

Table 2: The best VAO++ result compared to Unity SSAO imple-
mentation for the scene on Figure 15. Note that both algorithms use
different sample counts for each quality level.

impact on visual quality – culling pre-pass causes artifacts of neg-
ligible size and adaptive sampling only affects areas further from
camera. Samples generation is run offline and results are reused.
Therefore our extensions do not impose any additional limitations
compared to original VAO algorithm.

7. Conclusion

We described the VAO++ method that extends the previously pro-
posed VAO algorithm [SKUT∗10] with several optimizations im-
proving its performance and visual quality. These optimizations
include adaptive sampling, culling pre-pass, luminance sensitivity,
depth range check, and efficient interleaved sampling with a com-
pact sample set. We described the implementation of the method
within the Unity game engine including two different ways of inte-
grating the method into the rendering engine.

We evaluated the method in terms of speed and visual quality.
The results show that the method achieves up to 30% faster ren-
dering while keeping the same quality as the standard Unity imple-
mentation of SSAO. In the future we plan to extend the method by
further optimizing the sample set using a kernel with variable sam-
pling density together with multi-scale depth buffer representation.

Acknowledgements

We thank Marko Dabrovic for the Sibenik scene, Anat Grynberg and Greg
Ward for the Conference scene, Stanford University for the Dragon model,
and Unity Technologies for Corridor and Viking Village scenes. This work
was partially supported by the Grant Agency of the Czech Technical Uni-
versity in Prague, grant No. SGS16/237/OHK3/3T/13.

References
[BE05] BUNNELL M., ELEMENTS S.: Dynamic ambient occlusion and

indirect lighting. GPU Gems (2005), 223–233. 2

[CAM08] CLARBERG P., AKENINE-MÖLLER T.: Exploiting Visibility
Correlation in Direct Illumination. Computer Graphics Forum (Proceed-
ings of EGSR 2008) 27, 4 (2008), 1125–1136. 2

[Chr08] CHRISTENSEN P. H.: Point-Based Approximate Color Bleeding.
Tech. Rep. 08-01, Pixar, Emeryville, CA, 2008. 2

[Eve01] EVERITT C.: Interactive order-independent transparency. White
paper, nVIDIA, 2(6), 7, 2001. 4

[HJ08] HOBEROCK J., JIA Y.: High-quality ambient occlusion. In GPU
Gems 3, Nguyen H., (Ed.). Addison-Wesley, 2008, pp. 257–274. 2

[IKSZ03] IONES A., KRUPKIN A., SBERT M., ZHUKOV S.: Fast, realis-
tic lighting for video games. IEEE Computer Graphics and Applications
23, 3 (2003), 54–64. 1, 2

[KA06] KONTKANEN J., AILA T.: Ambient occlusion for animated char-
acters. In proceedings of Eurographics Symposium on Rendering (2006),
pp. 343–348. 2

[KL05] KONTKANEN J., LAINE S.: Ambient occlusion fields. In Pro-
ceedings of the 2005 Symposium on Interactive 3D Graphics (2005),
pp. 41–48. 2

[Lan02] LANDIS H.: Production-ready global illumination. acm siggraph
course, 2002. 1, 2

[Mit07] MITTRING M.: Finding next gen: Cryengine 2. In ACM SIG-
GRAPH 2007 Courses (New York, NY, USA, 2007), SIGGRAPH ’07,
ACM, pp. 97–121. 1, 2

[MSC03] MENDEZ A., SBERT M., CATA J.: Real-time obscurances
with color bleeding. In Proceedings of Spring Conference on Computer
Graphics (April 2003). 2

[Ngu07] NGUYEN H.: Gpu Gems 3, first ed. Addison-Wesley Profes-
sional, 2007. 2

[Pho75] PHONG B.-T.: Illumination for Computer Generated Pictures.
Communications of ACM 18, 6 (1975), 311–317. 2

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.-P.: Approximating Dy-
namic Global Illumination in Screen Space. In Proceedings ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games (2009). 2

[SA07] SHANMUGAM P., ARIKAN O.: Hardware accelerated ambient
occlusion techniques on gpus. In Proceedings of the 2007 Symposium
on Interactive 3D Graphics and Games (New York, NY, USA, 2007),
I3D ’07, ACM, pp. 73–80. 1, 2

[Sai08] SAINZ M.: Real-time depth buffer based ambient occlusion. gdc
presentation., 2008. 2

[SKUT∗10] SZIRMAY-KALOS L., UMENHOFFER T., TOTH B., SZECI
L., SBERT M.: Volumetric ambient occlusion for real-time rendering
and games. IEEE Computer Graphics and Applications 30, 1 (Sept.
2010), 70–79. 2, 3, 8

[VPG13] VARDIS K., PAPAIOANNOU G., GAITATZES A.: Multi-view
ambient occlusion with importance sampling. In Proceedings of the Sym-
posium on Interactive 3D Graphics and Games (2013), pp. 111–118. 4

[ZIK98] ZHUKOV S., IONES A., KRONIN G.: An ambient light illumi-
nation model. In Rendering Techniques ’98: Proceedings of the Euro-
graphics Workshop (1998), pp. 45–55. 1, 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Bokšanský, Pospíšil, Bittner / VAO++: Practical Volumetric Ambient Occlusion for Games

Figure 15: The comparison of Unity SSAO (top) and VAO++ (bottom) for increasing sample counts. For Unity SSAO we used 3, 6, 10, and
16 samples, for VAO++ 2 4, 8 and 16 samples.

Figure 16: Comparison of VAO++ to ray-traced reference. Left to right: Ray-traced AO Sibenik, VAO++ Sibenik, Ray-traced AO Conference,
VAO++ Conference.

Figure 17: (left) Snapshots of the test scenes (Viking Village, Corridor, Sibenik and Sponza) rendered with VAO++, (center) VAO++ visual-
ization, (right) Unity’s built-in SSAO visualization.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

